• 联系我们丨中文丨English

建筑环境与能源应用工程系

首页 首页  教师简介  建筑环境与能源应用工程系

黄跃武

发布时间:2020-09-21

黄跃武教授硕导

联系方式:021-67792553

电子邮箱:huangyuewu@dhu.edu.cn

办公地址:松江区人民北路2999号,东华大学,松江校区四号学院楼5147室

教育经历

哈尔滨工业大学  供热、供燃气、通风及空调工程     博士/硕士

武汉科技大学     供热、供燃气、通风及空调工程

主讲课程

1、热质交换原理与设备; 2、高等工程热力学;3、数值传热学

研究方向

   1.太阳能光伏光热综合利用;2.建筑能源系统优化与控制;3.燃料电池耦合系统;4.非平衡态热力学研究。

承担科研项目

1、空调用变频制冷系统非平衡态热动力学研究——国家自然科学基金面上项目

2、变频热泵系统非平衡定态稳定性研究——上海自然科学基金项目

代表性论著

(1) Local stability analysis of a class of endoreversible heat pumps. Journal of Applied Physics. 102(2007), 034905.


(2) Local Stability Analysis of a Non-Endoreversible Heat Pump. Journal of Non-Equilibrium Thermodynamics. 33(2008),61-74.


(3) The effect of cooling load and thermal conductance on the local stability of an endoreversible refrigerator. International Journal of Refrigeration. 31(2008), 483-489.


(4) Performance optimization for an irreversible four-temperature-level absorption heat pump. International Journal of Thermal Sciences.47(2008), 479-485.


(5) Local Asymptotic Stability of an Irreversible Heat Pump Subject to Total Thermal Conductance Constraint. Energy Conversion and Management. 50(2009), 1444-1449.


(6) Performance evaluation of an integrated photovoltaic module and cascading thermally regenerative electrochemical devices system. Energy Conversion and Management.264(2022), 115737.


(7) Performance investigation of an updated alkali metal thermoelectric converter-thermally regenerative electrochemical cycles-thermoelectric generator hybrid system. Energy Conversion and Management. 245(2021),114503.


(8) Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices. Energy.260(2022), 125102.


(9) Performance assessment of a perovskite solar cell-driven thermionic refrigerator hybrid system. Energy. 266(2023), 126508.


(10) Performance assessment of a coupled device of thermoradiation cell and photovoltaic cell for energy cascade utilization. Energy. 281(2023),128299.


(11) Efficient low-grade waste heat recovery from concentrated photovoltaic cells through a thermolytic pressure retarded osmosis heat engine. Energy.308(2024),132791.


(12) Performance evaluation of a solar hybrid system integrating a two-stage annular thermoelectric generator. Renewable Energy. 215(2023),118939.


(13) Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production. Renewable Energy. 215(2023), 118972.


(14) Performance evaluation of an integrated system of a vacuum thermionic energy converter and a thermophotovoltaic cell. Renewable Energy. 232(2024), 121047.


(15) Performance analysis of a coupled concentrated spectrum splitting perovskite solar cell and thermally regenerative electrochemical cycles system. Renewable Energy. 244(2025),122632.


(16) A hybrid system integrating photovoltaic module and thermoelectric devices for power and cooling cogeneration. Solar Energy.239(2022), 350-358.


(17) Potential evaluation of an annular thermoelectric cooler driven by a dye-sensitized solar cell. Solar Energy.258(2023),351-360.


(18) Performance investigation of a system hybridizing high-temperature polymer electrolyte membrane fuel cell with intermediate band thermoradiative device. International Journal of Hydrogen Energy. 48 (2023),31708-31719.


(19) Local stability characteristics of a non-endoreversible heat engine working in the optimum region. Applied Thermal Engineering. 29(2009),358-363.


(20) Performance investigation of a concentrated photovoltaic-thermoelectric hybrid system for electricity and cooling production. Applied Thermal Engineering.231(2023),120916.


(21) Performance optimization of a solar-driven alkali metal thermoelectric converter coupled to thermally regenerative electrochemical cycles. Applied Thermal Engineering. 219(2023),119569.


(22) Exploiting the waste heat in a proton exchange membrane fuel cell with a capacitive salinity/heat engine. Applied Thermal Engineering.257(2024), 124277.


(23) Potential analysis of a perovskite solar cell-thermally regenerative electrochemical cycles/refrigerators hybrid system. Applied Thermal Engineering.250(2024),123539.


(24) Graphene thermionic energy converter integrated with two-stage thermoelectric generator for energy cascade utilization. Applied Thermal Engineering. 254(2024),123867.


(25) Applicability of the low-dissipation model: Carnot-like heat engines under Newton’s law of cooling. Physical Review E. 102(2020),012151.