王宇晖
发布人: 杨小明   发布时间: 2019-03-22    浏览次数:



王宇晖:1984年生,博士/副教授,硕士生导师



教育经历:

2003-2007年,东华大学(中国纺织大学),环境科学专业,学士

2007-2012年,东华大学与中国水利水电科学研究院联培博士,导师:王浩


研究方向:

污染水体生态修复技术、河湖生态动力学模型


主讲课程:

《环境水文学》、《环境管理》、《Matlab编程与微机上机》


科研项目:

[1]国家自然科学基金青年科学基金项目(No. 51309053)—微电场-人工湿地修复水体重金属污染的效果和机理及优化调控(25万元,主持)

[2] 国家科技支撑计划课题专题项目(No. 2015BAB07B09)—南水北调中线水质差异应对关键技术研究与应用(26万元,主持)

[3]上海市青年科技启明星计划C类项目(No. 19QC1401100)—nZVI-BioChar协同强化人工湿地去除水中类固醇雌激素的应用及调控机制(40万元,主持)

[4] 东华大学”励志计划”项目(No. B201310)—复合电极人工湿地对低C/N污水高效脱氮的机理研究(40万元,主持)

[5] 国家重点实验室开放基金项目(No. IWHR-SKL-201313)—电极强化潜流人工湿地水质净化的机理研究(5万元,主持)

[6] 生态环境部公益性行业专项课题专题项目(No. 201309042)—流域综合规划环境影响评价关键技术研究(15万元,主持)

[7] 上海市金山区环境管理系统开发与测试项目(No. 11315176)30万元,主持

[8] 中央高校基本科研业务费专项基金(No. 11315176)—生物炭基人工湿地修复水体类固醇雌激素污染的机理(15万元,主持)

[9] 国家重点基础研究发展计划973计划项目专题(No. 2010CB951102)——气候变化对黄淮海地区水循环的影响机理和水安全评估(56万元,参与)

[10] 上海市“科技行动创新计划”社会发展领域项目(No. 17DZ1202204)—电镀行业场地重金属迁移转化机制及其风险评估技术研究(60万元,参与)

[11] 上海市自然科学基金面上项目(No. 10ZR1400300)—水平潜流人工湿地新型运行工艺脱氮的机理及其模拟(10万元,参与)


科研论文(第一/通讯)

[1] Wang JF, Zhu QY, Shan YG, Wang YH*, Song XS, Lei XH. A comparative study on the efficiency of biodegradable EDDS and micro-electric field on the promotion of the phytoextraction by Commelinacommunis L. in Cu-contaminated soils. Geoderma. 2018,314.

[2] Wang YH, Yan DH, Wang JF, Ding Y, Song XS. Effects of Elevated CO2 and Drought on Plant Physiology, Soil Carbon and Soil Enzyme Activity with Glycine max (Soybean). Pedosphere. 2017, 27(5): 846-855.

[3] Wang JF, Song XS*, Wang YH*, Bai JH, Li MJ, Dong GQ, Lin FD, Lv YF, Yan DH. Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. Science of Total Environment. 2017, 607-608(12): 53-62.

[4] Wang JF, Song XS, Wang YH*, Bai JH, Bai H, Yan DM, Cao Yin, Li YH, Yu ZL, Dong GQ. Bioelectricity generation, contaminant removal and bacterial community distribution as aected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell. Bioresource Technology. 2017, 245(12): 372-378.

[5] Wang JF, Wang YH*, Bai JH, Liu ZW, Song XS, Yan DM, Abiyu A, Zhao ZM, Yan DH. High efficiency of inorganic nitrogen removal by integrating biofilm-electrode with constructed wetland: Autotrophic denitrifying bacteria analysis. Bioresource Technology. 2017, 227(3): 7-14.

[6] Wang JF, Song XS, Wang YH*, Zhao ZM, Wang BD, Yan DH. Effects of electrode material and substrate concentration on the bioenergy output and wastewater treatment in air-cathode microbial fuel cell integrating with constructed wetland. Ecological Engineering. 2017, 99(2): 191-198.

[7] Ding Y, Wang W, Liu XP, Song XS, Wang YH*. Ullman JL. Intensied nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology. Bioresource Technology. 2016, 219(11): 757-761.

[8] Wang W, Ding Y, Wang YH*, Song SX, Ambrose RF, Ullman JL. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition. Bioresource Technology. 2016, 218(10): 1261-1265.

[9] Wang W, Ding Y, Wang YH*, Song XS, Ambrose RF, Ullman JL, Winfrey BK, Wang JF, Gong J. Treatment of rich ammonia nitrogen wastewater with polyvinyl alcohol immobilized nitrifierbiofortified constructed wetlands. Ecological Engineering. 2016, 94(9): 7-11.

[10] Zhao ZM, Song XS*, Wang YH*, Wang DY, Wang SY, He Y, Ding Y, Wang W, Yan DH, Wang JF. Effects of algal ponds on vertical flow constructed wetlands under different sewage application techniques. Ecological Engineering. 2016, 93(8): 120-128.

[11] Song XS, Wang YH*, Wang SY, Yan DH. Addition of Fe2+ increase nitrate removal in vertical subsurface flow constructed wetlands. Ecological Engineering. 2016, 91(6): 487-494.

[12] He Y, Wang YH*, Song XS. High-effective denitrification of low C/N ratios wastewater by constructed wetland (CW) combined with biofilm-electrode reactor (BER). BioresourceTechnology. 2016, 203(3): 245-251.

[13] Wang YH, Wang JF, Zhao XX*, Song XS, Gong J. The Inhibition and Adaptability of Four Wetland Plant Species to High Concentration of Ammonia Wastewater and Nitrogen Removal Efficiency in Constructed Wetlands. Bioresource Technology. 2016, 202(2):198-205.

[14] Wang YH, Liao WH, Ding Y, Wang X, Jiang YZ, Song XS, Lei XH*. Water resource spatiotemporal pattern evaluation of the upstream Yangtze River corresponding to climate changes. Quaternary International. 2015, 380-381(9): 187-196.

[15] Song XS, Ding Y, Wang YH*, Wang W, Wang G, Zhou B. Comparative study of nitrogen removal and bio-film clogging for three filter media packing strategies in vertical flow constructed wetlands. Ecological Engineering. 2015, 74(1): 1-7.

[16] Ding Y, Wang W, Song XS*, Wang G, Wang YH*. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland. Chemosphere, 2014, 117(12): 502-505.

[17] Wang YH, Jiang YZ, Liao WH, Gao P, Huang XM, Wang H, Song XS, Lei XH. 3-D hydro-environmental simulation of Miyun reservoir, Beijin. Journal of Hydro-environment Research, 2014, 8(4): 383-395.

[18] Ding Y, Wang W, Song XS, Wang YH*. Spatial distribution characteristics of environmental parameters and nitrogenous compounds in horizontal subsurface flow constructed wetland treating high nitrogen-content wastewater. Ecological Engineering. 2014, 70(9): 446-449.

[19] Wang YH, Song XS, Liao WH, Niu RH, Wang W, Ding Y, Wang Y, Yan DH. Impacts of inlet-outlet configuration, flow rate and filter size on hydraulic behavior of quasi-2-dimensional horizontal constructed wetland: NaCl and dye tracer test. Ecological Engineering. 2014, 69(8): 177-185.

[20] Wang YH, Song SX, Ding Y, Niu RH, Zhao XX, Yan DH. The impact of influent mode on nitrogen removal in horizontal subsurface flow constructed wetlands: A simple analysis of hydraulic efficiency and nutrient distribution. Ecological Engineering. 2013, 60(11): 271-275.

[21] Wang YH, Lei XH, Liao WH, Jiang YZ, Huang XM, Liu JS, Song XS, Wang H. Monthly spatial distributed water resources assessment: a case study. Computers & Geosciences, 2012, 45(8): 319-330.

[22] Wang YH*, Wang H, Lei XH, Jiang YZ, Song XS. Flood simulation using parallel genetic algorithm integrated wavelet neural networks. Neurocomputing, 2011, 74(17): 2734-2744.

[23] Lei XH, Wang YH*, Liao WH, Jiang YZ, Tian Y, Wang H. Development of efficient and cost-effective distributed hydrological modeling tool MWEasyDHM based on open-source MapWindow GIS. Computers & Geosciences, 2011, 37(9): 1476-1489.

[24] Wang YH, Niu RH, Han YZ, Lei XH, Jiang YZ, Song XS, 2013. Efficiency and Feasibility of an Integrated Algorithm for Distributed Hydrological Model Calibration. Journal of Donghua University, 30(4): 323-329.


专著出版:

[1] 王宇晖, 薛伟, 廖卫红, 雷晓辉, . 水文模拟预测方法和应用The Method and Application of Hydrological Modeling, 2015. 中国水利水电出版社. ISBN: 978-7-5170-3064-5.

[2] 王宇晖, 廖卫红, 雷晓辉, 宋新山, . 流域水量水质联合模拟技术与应用, 2015. 中国水利水电出版社. ISBN: 978-7-5170-3100-0.

[3] 王俊峰,宋新山,刘昭伟,王宇晖,著. Micro-electric Field or MFC Constructed Wetlands for Water Purification, 2018. 中国水利水电出版社. ISBN: 978-7-5170-6453-4.


专利授权:

[1]C/N生活污水高效脱氮的复合电极水平潜流人工湿地装置,发明专利,ZL201310122176.X

[2]一种高效处理有机污水的微生物燃料电池人工湿地,发明专利,ZL201410001954.4

[3]一种地热自暖水平潜流人工湿地污水处理系统,发明专利,ZL2014101393633

[4]一种间歇式运行的垂直流人工湿地增氧脱氮系统, 发明专利, ZL2014100026158.X

[5]一体化硝化反硝化自驱动微电场强化人工湿地的装置,发明专利, ZL201510256060.4

[6]一种人工湿地水动力研究实验装置,实用新型,ZL201320206442.2

[7]一种藻菌共生表面流复合人工湿地系统,实用新型,ZL201320449052.8

[8]一种占地面积小的塘床耦联复合型人工湿地净水系统,实用新型,ZL201320637308.8

[9]间歇式运行的垂直流人工湿地增氧脱氮系统,实用新型,ZL201420003412.6

[10]一种可辅助曝气及以反冲洗措施解决堵塞的人工湿地,实用新型,ZL201420293699.0

[11]一种用中空纤维膜模拟植物根系进行微曝气的人工湿地,实用新型,ZL201420363732.2


奖励荣誉:

[1]大禹水利科学技术奖, 特等,气候变化对旱涝灾害的影响及风险评估技术, 2015, 大禹水利科学技术奖奖励委员会

[2] 2018年度东华大学青年教师教学竞赛二等奖

[3] 2017年度东华大学优秀教师


其他:

联系方式:02167792558(办公室)

邮箱Emailyhwang@dhu.edu.cn



上善若水,水善利万物而不争!

夫唯不盈,故能蔽而新成!